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Describing distributions
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It is great to look at frequency tables, plots, and frequency polygons. But 
sometimes, we want single numbers that can describe some aspect of the 
distribution. 

There are different types of information that one could be interested in. Here 
are two types that arise frequently:

Central Tendency:

(or location) 

Variability:

(or spread/dispersion)

A measure of location/central tendency gives a single 
value that is representative of the distribution as a 
whole (its expected value). The three most common 
measures of this are the mean, median, and mode.

A measure of variability/dispersion/spread gives a 
single value that indicates how different the values in a 
distribution are from each other. The most common 
measures are variance and standard deviation, and 
sometimes the absolute deviation.

We will see these over and over again, but for now, I will simply define them 
so that we are all on the same page mathematically when they come up later.



Three measures of central tendency



Central Tendency: Mean
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Let’s start with the (arithmetic) mean. This is commonly called the average, 
but you should avoid that word. It is not precise enough. Say mean.

The sum of the values, divided by the number of values (the 
count) that were summed.

Mean:

x1 + x2 + … xn

n
Mean =

The mean is by far the most common measure of central tendency, so you will 
encounter (and use it often). The primary benefit of the mean is that all data 
points contribute equally to it. But this is also a drawback, as it means that it is 
affected by outliers.

mean(1, 2, 3, 4, 5) = 3

mean(1, 2, 3, 4, 10) = 4

mean(1, 2, 3, 4, 100) = 22

outliers: Values that are much 
larger or much smaller 
than the rest of the 
values in a distribution.



Central Tendency: Median
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The next most common measure of central tendency is the median.

The median is the value in a set of values that divides the set into 
two halves (an upper half and a lower half). If there is an odd 
number of values in the set, the median will be one of the values 
in the set. If there is an even number, the median will be the mean 
of the two middle values.

Median:

The median is interesting for a number of reasons, but perhaps the most 
valuable aspect of the median is that it is robust to outliers. This is just a 
fancy way of saying that the median is not influenced by very large (or very 
small) numbers. This is because all that matters is the order of the values, not 
the size of the values. This is in stark contrast to the mean.

mean(1, 2, 3, 4, 5) = 3

mean(1, 2, 3, 4, 10) = 4

mean(1, 2, 3, 4, 100) = 22

median(1, 2, 3, 4, 5) = 3

median(1, 2, 3, 4, 10) = 3

median(1, 2, 3, 4, 100) = 3



The Mean/Median see-saw analogy
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I am not kidding when I say that there is a nifty visual analogy for means and 
medians involving a seesaw.

Imagine that you have 4 people on a see-saw, roughly split 2 on each side. 
Where do you place the fulcrum of the see-saw? The mean will be the balance 
point between their weights, and the median will be the point that keeps two 
people on either side of fulcrum.

If their weights are equal, the mean and median 
will be the same.

If one of them weighs more than the others, the 
median will still be in the same place - to split the 
teams. But the mean would move to adjust for the 
extra weight of that person.

How far it moves depends on the how much more 
that person weighs.



The Mean/Median see-saw analogy
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You can also think about the see-saw analogy with distances. This is closer to 
the way we plot distributions, so it is sometimes the way it is presented.

Here you need to imagine that the location on the see-saw indicates something 
about weight — kind of like the way something sitting on the edge of a long 
board will be heavier than something sitting on a short board (when you hold it 
by the other end). The same logic applies — the median will always split 
between 2 and 2. The mean will move based on the distance that the fourth 
person is from the group:

outliers



Mean/Median and the shape of distributions
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If the distribution is symmetric, the 
mean and median will be identical.

Asymmetric distributions are said to be 
skewed. In a skewed distribution, the 
mean and median will not be identical.

A distribution is negatively skewed if it 
has a long leftward tail (toward smaller 
numbers).

A distribution is positively skewed if it 
has a long rightward tail (toward larger 
positive numbers).
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Skew and ceiling/floor effects
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Skew can have many sources. For example, some phenomena simply have an 
exponential distribution that leads to a tail.

But the most common causes of skew are ceiling and floor effects.

Ceiling and floor effects arise when there is a hard boundary on one edge of 
the scale. A floor effect is when the hard boundary is on the lower end of the 
scale. A ceiling effect is when the hard boundary is on the higher end of the 
scale.
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One very common floor effect in psychology is when we measure time - 
reaction times, study time, etc. Time has a natural floor of 0. This leads times 
to be positively skewed.



Choosing between mean and median
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The critical question is whether extreme values are relevant to your scientific 
theory/question or not. If they are relevant to your theory/question, then you 
want to use the mean so that they are included. If they are not relevant (they 
are outliers), then you may want to use the median.

For the inferential statistics that we will do later in this course, we will use the 
mean. This is because much of frequentist statistics is built around the mean 
as the measure of central tendency.

But if you are just trying to describe your data set (descriptive statistics), you 
often have a choice:

Decisions about safety design Studies of income distribution

Injuries during car trips are 
rare. They are outliers. If you 
took the median car trip, it 
would tell you there are 0 
injuries. And then you might 
not add safety features. So we 
use the mean.

The very rich (like Jeff Bezos or 
Elon Musk) can distort our view 
of the average wealth of 
citizens in states like 
Washington or California. So we 
use the median instead.



Central Tendency: Mode
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The most frequent score in a distribution.Mode:

The mode is not very common as a measure of central tendency. But it is the 
most flexible - it is defined for all four measurement types. It is worth noticing 
that the median is not defined for nominal measurements, and the mean is not 
defined for nominal or ordinal measurements:

nominal ordinal interval ratio

mode ✓ ✓ ✓ ✓

median X ✓ ✓ ✓

mean X X ✓ ✓



Mode and the shape of the distribution
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Though the mode is not very common as a measure of central tendency, it is 
used as an additional dimension for reporting the shape of a distribution.

One mode, visible as a single peak in the distribution.unimodal:

Two modes, visible as two peaks in the distribution.bimodal:

You should always look at the distribution of your data before doing a 
statistical analysis. You should check to make sure it is unimodal. If it is 
bimodal, it may indicate that your participants were sampled from two 
different populations rather than being sampled from the same population.



Measures of variability



Range, Interquartile Range, and 

Semi-Interquartile Range


(You should know that these exist, but they are not as important as 
the standard deviation and absolute deviation measures we will see 

later)



The range
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The range is sometimes defined as the difference between the smallest and 
largest value in a data set.

Let’s simulate height data again. 
The smallest value is 137.6 and the 
largest is 200. So the range is 62.4.

However, in practice, the range is 
the report of the smallest and 
largest values: 137.6 to 200. If you 
use the range() function in R, you 
will get a vector with these two 
numbers. 0.0

2.5

5.0

7.5

10.0

12.5

140 160 180 200
Height (cm)

Fr
eq

ue
nc

y

The main benefit of the range is that it includes every data point. It is 
exhaustive. The main drawback is that it is influenced by outliers in both 
directions. Therefore it is really only beneficial if you truly want to report the 
range of the measure. It is not so great as a measure of variability.



Quartiles
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A quantile is a general term for the cut points that create adjacent chunks 
that each contain the same number of data points.

The most common quantiles are those that 
create chunks that contain 25% of the data 
set. They are called quartiles because 
there are four chunks: the one from 0 to 
25%, the one from 25% to 50%, the one 
from 50% to 75%, and the one from 75% 
to 100%. The plot on the right is a 
symmetric distribution with 3 quartiles (cut 
points) in purple, creating 4 chunks.
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We can also do this with real data sets. 
The plot on the left is our simulated height 
data plotted with quartiles in black 
dividing the four chunks.



The interquartile range
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The interquartile range is the range between the 1st quartile and the 3rd 
quartile. Visually, it is the range between the first line and the third line in 
these plots. It shows us the middle 50% of the data, so like the median (the 
middle line), it is not impacted by outliers!
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The interquartile range
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The interquartile range for our simulated height data set is 10.7. You can 
find it using the R function IQR(). Unlike raw range, the interquartile range is 
reported as a single number (the technical definition of range) because it is 
seen as a measure of variability (it captures the middle 50% of the data).
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The semi-interquartile range
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A semi-interquartile range is the interquartile range divided by 2. So for our 
data set it is around 5cm. It is seen as a measure of variability moving in 
either direction away from the median. It is rarely seen because the median is 
rarely used in inferential statistics. But it is worth knowing what it is.



Standard deviation and Absolute deviation


(These are the important ones. And standard deviation is the most 
important of all.)



Deviation scores
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The idea behind a deviation score is really straightforward. We choose a central 
tendency for the data set, and then ask how far each data point is from that 
central tendency. To calculate distance, we do subtraction:

The distance of each score from the central tendency.deviation:

Deviation = (x - CT)

Data set: 1, 2, 3, 4, 10 


Central Tendency: 
mean


Mean: 4

deviation of 1 = 1 - 4 = -3

deviation of 2 = 2 - 4 = -2

deviation of 3 = 3 - 4 = -1

deviation of 4 = 4 - 4 = 0

deviation of 10 = 10 - 4 = 6



A failed attempt at variability
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What we want is a measure of variability for the entire data set. An obvious 
and logical idea would be to sum the deviations for each score, and use that 
sum as a measure of variability in the data set. Let’s try this with our 
previous example:

Data set: 1, 2, 3, 4, 10 


Central Tendency: 
mean


Mean: 4

deviation of 1 = 1 - 4 = -3

deviation of 2 = 2 - 4 = -2

deviation of 3 = 3 - 4 = -1

deviation of 4 = 4 - 4 = 0

deviation of 10 = 10 - 4 = 6

sum of the deviations: 


-3 + -2 + -1 + 0 + 6 = 0

The problem with plain deviation 
scores is that they do not work as a 
measure of variability for the entire 
data set when the CT is the mean.

So what we learn here is that the sum of basic deviation scores is not going to 
be helpful for us when we use mean. It will always sum to 0.



The problem with the mean (visual)
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Because of the definition of the mean, the deviation (from the mean) of the 
points below the mean will always equal the deviation of the points above the 
mean. So it is impossible to simply sum this deviation.



Squared deviations
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The critical problem with deviations is that they are both positive and negative. 
But if we could eliminate the negative signs so they are all positive, we could 
sum them without running into a problem. One way to get rid of negative signs 
is to square them.

squared deviation = (x - CT)2

We can now sum the squared deviations as a measure of total variability:

sum of squares = (x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

Data set: 1, 2, 3, 4, 10 

Central Tendency: 
mean

Mean: 4

deviation2 of 1 = (1 - 4)2 = 9

deviation2 of 2 = (2 - 4)2 = 4

deviation2 of 3 = (3 - 4)2 = 1

deviation2 of 4 = (4 - 4)2 = 0

deviation2 of 10 = (10 - 4)2 = 36
sum of squares: 


9 + 4 + 1 + 0 + 36 = 50



Why we can’t stop. The problem with SS.
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The sum of squares is a measure of total variability in the data set:

We could try to use the sum of squares as our measure of variability. But one 
problem with the sum of squares is that its size is dependent upon the number 
of values in the set. Larger sets could have larger sum of squares simply 
because they have more values, even though there might really be less 
variation. Here are two examples to illustrate this

sum of squares = (x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

[1, 2, 3, 4, 10]


sum of squares: 9 + 4 + 1 + 0 + 36 = 50

[4,4,4,4,4,4,4,4,4,4,6,8,8,8,8,8,8,8,8,8,8]


sum of squares: (4x10) + (4x10) = 80

Intuitively, you probably 
agree that the first set is 
more variable. The range is 
higher (9 vs 4). The number 
of different scores is higher 
(5 vs 3). But SS is higher 
for the second set simply 
because there are simply 
more values in the data set.



Variance
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The solution to the problem (that SS tends to grow with the number of data 
points in the set) is to divide by the number of data points:

The intuition behind this is similar to the way we divide by the number of data 
points when we calculate the mean — dividing a sum by the number of data 
points gives us an “average” - each data point contributes a portion of itself to 
the sum. So, here we are calculating an average measure of variability. This 
gets a special name called variance.

variance =
(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

The variance is a really important concept in statistics. So, you should 
memorize this. I find it easiest to memorize this by focusing on the logic we 
just went through — deviation scores, square them to eliminate negative 
signs, sum them for total variability, divide by n to get an average measure of 
variability.



Standard Deviation
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Although variance is a useful measure, and we will see it often in statistics, it 
does have one problem. It is in really strange units - the units of measure are 
squared!

variance =
(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

height squared?

stress ratings squared?

days ill squared?

The fix for this should be obvious. We can simply take the square root of the 
variance to change it back into un-squared units. We call this the standard 
deviation:

standard

deviation =

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

same units as the original values - cm, days, etc.

These are not meaningful in 
the real world. So we 
probably don’t want this as 
our only measure.

n



Standard Deviation
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The standard deviation is exactly what the name sounds like - a measure of 
the amount of deviation that a typical data point shows around the central 
tendency. 

standard

deviation =

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

The standard deviation is a really important concept in statistics. So, you 
should memorize this. I find it easiest to memorize this by focusing on the 
logic we just went through — deviation scores, square them to eliminate 
negative signs, sum them for variability (sum of squares), divide by n to get 
an average measure of variability (variance), and take the square root to 
change it back to the original unit of measure (standard deviation). I know it is 
a lot. But just remember that each step in the chain has a logical motivation. If 
you can reconstruct the logic, you can always reconstruct the equation!



Which CT should we use? The mean.
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standard

deviation =

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

sum of squares =

variance =
(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

I have written these with CT because they can, in principle, be used with either 
the mean or median. But variance and standard deviation are always used 
with the mean. To show you why, I need to take a step back and show you a 
different deviation score that we could have defined…



The absolute deviation - no squaring for us!

30

Then we can sum the absolute deviations:

average absolute deviation = |x1 - CT| + |x2 - CT| + … + |xn - CT|
n

Let’s go back to our first logical move. We needed to eliminate the negative 
signs for our deviation scores, so we squared them. That probably sounded odd 
to you because you know we have another option — absolute values:

|x - CT|absolute deviation =

|x1 - CT| + |x2 - CT| + … + |xn - CT|

And then divide by n to get an average of the sum of the absolute deviations:

sum of absolute deviations =

And note that we don’t have to take a square root because the units are still 
the same as the original data set (we didn’t square anything).



(Average) Absolute Deviation
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The (Average) Absolute Deviation is similar to the standard deviation. It tells 
us how a typical data point deviates from the central tendency.

And just like the standard deviation, it can be used with either the mean or the 
median:

average absolute deviation = |x1 - CT| + |x2 - CT| + … + |xn - CT|
n

mean absolute deviation = |x1 - mean| + |x2 - mean| + … + |xn - mean|
n

median absolute deviation = |x1 - median| + |x2 - median| + … + |xn - median|
n

But, in practice, you will typically see the absolute deviation with the median, 
just like you see the standard deviation with the mean.



Why mean w/SD and median w/AD?
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Even though we could, in principle, use either central tendency for these 
measures of variability, we tend to use a very specific mapping:

absolute deviation = |x1 - CT| + |x2 - CT| + … + |xn - CT|
n

standard =

deviation

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

mean

median

The reason is that we want minimize the variability. We want the smallest 
value that our equations will give so that we know it is a lower bound on the 
estimate of the variability. (As we saw with sum of squares, higher numbers 
can be due to reasons that don’t really matter for our science.)

So we can ask a mathematical question: Which measure of CT minimizes the 
standard deviation? And which measure of CT minimizes the absolute 
deviation?



Why mean w/SD and median w/AD?
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Even though we could, in principle, use either central tendency for these 
measures of variability, we tend to use a very specific mapping:

The mean is the measure of central tendency that minimizes variance (and 
standard deviation). The variance we calculate by using the mean will always 
be smaller than (or equal to) the variance by using the median.

The median is the measure of central tendency that minimizes the absolute 
deviation. The absolute deviation we calculate by using the median will always 
be smaller than (or equal to) the absolute deviation by using the mean.

absolute deviation = |x1 - CT| + |x2 - CT| + … + |xn - CT|
n

standard =

deviation

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

mean

median



Let’s simulate this!
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Let’s take 1000 samples of size 20. For each one, we will calculate all four 
possible measures:

mean absolute deviation = |x1 - mean| + |x2 - mean| + … + |xn - mean|
n

median absolute deviation = |x1 - median| + |x2 - median| + … + |xn - median|
n

mean standard deviation = (x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n

median standard deviation = (x1 - median)2 + (x2 - median)2 + … + (xn - median)2

n



Let’s simulate this!
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Let’s take 1000 samples of size 20. For each one, we will calculate all four 
possible measures.

I am not showing you the R code - 
but these are the results of the 
code. I created a population with a 
mean of 0 and a standard deviation 
of 1, and had R create 1000 
samples of size 20.

Then I asked R to calculate each of 
our 4 measures. What you see on 
the right are the four measures for 
the first 20 of the 1000 samples.

We can look at these to test our 
claims!



Testing our claims
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Claim 1:

For Standard Deviations, the mean will 
always be smaller than or equal to the 
median.

Look at the table on the right. What do 
you see? The MeanSD is always 
smaller than or equal to the 
MedianSD!

Claim 2:

For Absolute Deviations, the median 
will always be smaller than or equal to 
the mean.

And that is what we see!



Showing it for the full 1000 samples

37

Claim 1: For Standard Deviations, the mean will always be smaller than 
the median.

Prediction: If we calculate the difference 
median-mean, the result will 
always be positive.

0

100

200

300

400

500

0.00 0.05 0.10 0.15
differences

co
un
t

Prediction: All 1000 of the differences are 
positive. The mean is always 
smaller. 

Claim 2: For Absolute Deviations, the median will always be smaller than 
the mean.

Prediction: If we calculate the difference 
median-mean, the result will 
always be negative.

Prediction: All 1000 of the differences are 
negative. The median is always 
smaller. 
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Why mean w/SD and median w/AD?

38

Even though we could, in principle, use either central tendency for these 
measures of variability, we tend to use a very specific mapping:

The mean is the measure of central tendency that minimizes variance (and 
standard deviation). The variance we calculate by using the mean will always 
be smaller than (or equal to) the variance by using the median.

The median is the measure of central tendency that minimizes the absolute 
deviation. The absolute deviation we calculate by using the median will always 
be smaller than (or equal to) the absolute deviation by using the mean.

absolute deviation = |x1 - CT| + |x2 - CT| + … + |xn - CT|
n

standard =

deviation

(x1 - CT)2 + (x2 - CT)2 + … + (xn - CT)2

n

mean

median



Parameters versus Statistics


(Wherein we learn why Statistics is called “Statistics”)



 Populations and Samples

As scientists, we study populations, but we work with samples.

population sample

sampling

Both are just sets (or distributions). So we can describe both with the same 
mathematical concepts: mean, standard deviation, etc.
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Parameter and Statistic

Mathematically, populations and samples are the same thing - a distribution

population sample

So we can describe them using the same mathematical concepts - mean, 
standard deviation, etc. But when we do that, we use a different term for the 
numbers that describe populations and the numbers that describe samples:
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A number (like mean, standard deviation) that describes an 
aspect of a population. Usually written with a Greek letter.

Parameter:

Statistic: A number (like mean, standard deviation) that describes an 
aspect of a sample. Usually written with a Roman/Latin letter.
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The symbols for parameters and statistics

population

sample
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mean = µ

mean = x ̄

variance = σ2

standard deviation = σ

variance = s2

standard deviation = s

Parameters use 
Greek letters

Statistics use 
Roman/Latin 
letters


